
Texture Resampling While Raytracing:
Approximating the Convolution Region Using Caching

MS-CIS-94-03
HUMAN MODELING & SIMULATION LAB 60

Jeffry S. Nimeroff
Norman I. Badler
Dimitri Metaxas

ELECTE
FEB 081995

G

ÜÖLMOR

r>o

fNZ>

TJniversity of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

: Philadelphia. PA 19104-6389

February 1994

DISTRIBUTION STATEMBNfT A

Approved for public release;
Distribution Unlimited

riÄaicK. ^uri jx&ar ltiia tiufi J?UK KfcjyKUUUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for thi» collection of information i» estimated to average 1 hour per response, including the time for reviewing instruction], searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jeff er
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

(Jefferson

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
technical report

4. TITLE AND SUBTITLE
Texture Resampling While Raytracing: Approximating
the Concolution Region Using Caching

6. AUTHOR(S)
Jeffry S. Nimeroff, Norman I. Badler, Dimitri Metaxas

5. FUNDING NUMBERS

üfifiLöl~?il'C~öotl

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Department of Computer and Information Sciences
University of Pennsylvania
200 S. 33rd Street
Philadelphia, PA 19104-6389

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

ft/to Abm.m-Aift^i

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b, DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 worth)

We present a cache-based approach to handling the difficult problem of performing visually acceptable
texture resampling/filtering while ray-tracing. While many good methods have been proposed to handle
the error introduced by the ray-tracing algorithm when sampling in screen space, handling this error in
texture space has been less adequately addressed. Our solution is to introduce the Convolution Mask
Approximation Module (CMAM). The CMAM locally approximates the convolution region in the texture
space as a set of overlapping texture triangles by using a texture sample caching system and ray tagging.
Since the caching is hidden within the CMAM, the ray-tracing algorithm itself is unchanged while achieving
an adequate level of texture filtering (area sampling as opposed to point sampling/interpolation in texture
space). The CMAM is easily adapted to incorporate prefiltering methods such as MIP mapping and
summed-area tables as well as direct convolution methods such as elliptical weighted average filtering.

14. SUBJECT TERMS
Ray-tracing; Texture Resampling; Antialiasing;

Filtering; Convolution; Algorithms

15. NUMBER OF PAGES

16. PRICE COOE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Preserved by ANSI Std. Z39-IS
29«-102

Texture Resampling While
Ray-Tracing:

Approximating the Convolution Region
Using Caching*

Jeffry S. Nimeroff, Norman I. Badler, and Dimitri Metaxas
Center for Human Modeling and Simulation

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, Pa 19104-6389

February 9, 1994

Abstract

We present a cache-based approach to handling the difficult problem
of performing visually acceptable texture resampling/filtering while ray-

tracing. While many good methods have been proposed to handle the
error introduced by the ray-tracing algorithm when sampling in screen
space, handling this error in texture space has been less adequately ad-
dressed. Our solution is to introduce the Convolution Mask Approxima-
tion Module (CM AM). The CM AM locally approximates the convolution

region in texture space as a set of overlapping texture triangles by us-

ing a texture sample caching system and ray tagging. Since the caching
mechanism is hidden within the CM AM, the ray-tracing algorithm itself

is unchanged while achieving an adequate level of texture filtering (area
sampling as opposed to point sampling/interpolation in texture space).
The CMAM is easily adapted to incorporate prefiltering methods such
as MIP mapping and summed-area tables as well as direct convolution

methods such as elliptical weighted average filtering.

Keywords: Ray-Tracing; Texture Resampling; Antialiasing; Filter-

ing; Convolution; Algorithms

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D
D

By
Distribution /

Availability Codes

Dist

m.
Avail and /or

Special

»This research is partially supported by ARO Grant DAAL03-89-C-0031 including partic-
ipation by the U.S. Army Research Laboratory (Aberdeen), Natick Laboratory, and NASA
Ames Research Center; U.S. Air Force DEPTH contract, through Hughes Missile Systems
F33615-91-C-0001; DMSO through the University of Iowa; NSF Grant IRI91-17110, CISE
Grant CDA88-22719, and Instrumentation and Laboratory Improvement Program Grant.

#USE-9152503.

1 Introduction

Texture resampling is a well researched area of computer graphics. Adequate
methods exist for handling the introduction of aliasing errors while "shrinkwrap-
ping" a digital image onto the surface of a computer-generated object[6, 4, 13,
14, 18, 33, 11, 20, 17, 15]. Also, there exists a codification of the steps needed to
perform the process in an "ideal" (alias-free) manner[22, 24], These techniques
rely on area information from the rendering algorithm in order to perform their
function and the assumption is made that this information is readily available.
The Tenderer is expected to provide the pixel boundary in screen space and the
compound mapping (r) from texture to screen space (surface parameteriza-
tion combined with the view and screen projection). With this information the
filtering module can calculate the pixel's extent in texture space (via inverse
projection) and perform filtering within this extent. Exactly how each filtering
method uses this information is case dependent, but all the methods referenced
require some notion of the pixel's inverse projection into texture space.

Ray-tracing research has given us the ability to accomodate many optical
phenomena easily within a computer-modelled environment[32, 8, 7, 19, 28]. A
problem exists, however, in that the ray-tracing Tenderer neither explicitly com-
putes the pixel boundary in screen space, nor explicitly constructs the compound
mapping (the screen projection is replaced by the geometric ray intersection
process). This appears to preclude using the well-established texture filtering
algorithms without changing them severely or compromising the simplicity of

the ray-tracer.

We introduce and develop the Convolution Mask Approximation Module
(CMAM) and show how this simple caching module and ray tagging system
can be used to create an approximation to the texture space filter extent (con-
volution region) that allows the ray-tracer to perform texture filtering without
affecting its inherent simplicity. It will also be shown that this process adds
only 0(1) volume (time x space) complexity to the cost associated with any
of the adapted texture filtering methods. We conclude with examples of how
to use the CM AM in conjunction with MIP maps[33], summed-area tables[ll],

and the EWA filtering technique[20].

2 Applying Textures while Ray-Tracing

Applying textures while ray-tracing can be thought of as a multi-criteria sam-
pling process. Since only a finite number of rays can be cast for any image,
aliasing in screen space is always a concern - for example, undersamplmg the
screen space image function can allow objects to "fall between the cracks." In
addition, the presence of texture mapping means that the sample locations will

be used to acquire texture space information. Due to the projective native of
the ray tracing "camera" geometry and the nonlinearity of many explicit surface
parameterizations, samples that are well placed in screen space are not necessar-
ily well placed in object space or in texture space (Figure 1), therefore, essential
texture information maybe missed. Neither area sampling nor increasing the
sampling rate solves the problem.

Object Space (World)

Surface Param

Texture Space (Image)

Screen Space (One Pixel)

Figure 1: Dense Screen Space Distribution: Sparse in Object and Texture Space

Area sampling requires performing exact integration over the spatial extent
of the projected pixel. No information is lost as with point sampling, but per-
forming the integration is expensive, if not intractable. Two early attempts
were made at performing this type of area sampling in a ray-style renderer:
cone-tracing[l] and beam-tracing[23]. Cone-tracing treats each ray as a cone
emanating from the chosen point and having a divergence angle. Beam-tracing
projects a bundle of rays as a polygonal beam into the scene along the direction
that the infinitesimally thin ray would travel. Both methods require many limit-
ing assumptions to be made about the environment in order to remain tractable.
These limitations drastically effect the usefulness of the technique.

Modifying the sampling rate (number of rays processed), using statistically
significant samples in an attempt to adequately sample in screen or texture
space, can minimize the affects of aliasing energy but does not remove the
energy [12, 25, 7, 28]. Since a good portion of the ray-tracer's running time can be

attributed to intersection calculations[32] adding extra samples can significantly
affect a ray-tracer's performance. It turns out that many computer graphics
textures require an infinite sampling rate to be sampled adequately.

Rather than modifying the sampling rate or allowing the limiting assump-
tions of an area sampling ray-style Tenderer, our solution follows from texture
filtering research by using a modified point/area sampling method based on a
local set of known texture locations. This requires keeping a window of infor-
mation on the texture sampling pattern for each textured object.

3 Constructing the Convolution Region in Tex-
ture Space

The pixel's texture space extent (convolution region) is constructed by project-
ing the pixel's boundary points into texture space (Figure 2). A ray-tracing
algorithm could do this by firing rays through the corners of the pixel and
then mapping the intersection points via the surface parameterization. This

Object Space

B Projection of Pixel

into Texture Space

via Inverse Compound

Mapping

> <

Texture Space

Screen Space

Figure 2: Convolution Region: Pixel Projection

solution suffers from limitations[l, 23] due to the coupling of the rays and
also precludes using any of the simple, stochastic approaches to screen-space
antialiasing[12, 25, 7, 28]. The rays can still be treated independently if one

is willing to redefine the manner in which the convolution region is defined
(constructed).

Ray Intersection/

Surface Param
 »-

Texture Space

Screen Space (One Pixel)

Figure 3: Convolution Region: Convex Hull of Texture Point Samples

If we modify the definition of the convolution region to include that area of
texture space inside the convex hull of a set of texture space point samples (Fig-
ure 3), an incremental approach to texture filtering while ray-tracing evolves.

Adding s3 Incrementally

Build the Convex

Hull of the Convolution

Region in Texture Space

Figure 4: Incremental Construction of the Convolution Region

Our incremental convex hull filtering method approximates the filtering re-
gion in texture space as a set of (possibly) overlapping texture triangles (Figure
4). The current sample location along with the two previous sample locations
(provided the rays emanate from the same pixel) are used to give a local ap-

proximation to the texture area that needs to be filtered for this sample. This
overestimates the convolution region by allowing for the inclusion of a texture
sample more than once, but. guarantees that only those samples inside the convex
hull are included in the filtering operation. A non-incremental approach is not
as useful because every point sample of texture space cannot easily/accurately
be associated with a filtered texture intensity (filter values are only associated
with areas incrementally bound by the point samples).

3.1 Caching and the Convolution Mask Approximation
Module

Object Space (x,y,z)

Surface Parameterization

I
Texture Space (u,v)

CMAM Texture Access * ► Texture Image

4
Filtered Texture Intensity

Figure 5: Placement of the Convolution Mask Approximation Module

The convolution mask approximation module (CMAM) is a data structure
and a set of routines that resides between the texture image (or data structure)
and the surface parameterization (Figure 5) and implements the methodology
described above.

typedef float Color[COLOR.SPACE];

typedef struct cmam {

/* Flag for turning CMAM filtering on */

int filter;

/* Ray IDs of cached samples */

int last_id, sec_last_id;

/* Recursion levels of cached samples */

int last_level, sec_last_level;

/* Sample (u,v) of cached samples */

float last_u, sec_last_u;

float last_v, sec_last_v;

/* Texture data structure */
Color **map;

/* Bounds of texture array */
iut rows, cols;

} Cmam, »Cmamptr;

Filter

last_id sec_last_id

last-level sec-last-level

last-U sec_last-u

last-v secJast-v

map

rows cols

Texture Image or

Prefiltering

Data Structure

Figure 6: CMAM and Associated Texture Data Structure

Instead of having the ray-tracer accessing the texture image directly and
performing filtering itself, the CMAM takes the texture location, and returns
the filtered texture value to the ray-tracer.

The convolution region is approximated as above with ray tagging being used
to facilitate the process of finding related rays. Rays which are fired through
pixels on the same scanline in screen space, and might ultimately be used to
bound a region in texture space, are given the same ID and a starting recur-
sion level of zero. IDs, levels, and sample locations are passed to the CMAM
which compares them with the most recent CMAM accesses. ID matching facil-
itates the incremental building of the convolution area along the scanline. Level
matching allows the accumulation of texture area information treating proxi-

•A 1

X
/

sO. ' \
s =

Texture Space:

Texture Traingle

Made From

Current Sample and

and Two

Previous Samples

Figure 7: CMAM Approximation of Overlapping Texture Triangles

mate groups of reflected/refracted rays as an approximation to the travelling
wavefrontfl, 23]. If the IDs and levels match then the region bounded by the
samples in texture space is part of an approximation to the true convolution
region.

The CMAM then can use known filtering techniques such as MIP mapping,
summed-area tables or an EWA scheme to filter the area and return a texture
intensity (without any interdependence of the rays). No changes to the basic
ray-tracing implementation are necessary. The ray-tracer acts as if it is point
sampling in texture space.

3.2 Using the CMAM with Existing Techniques

How the CMAM uses its local approximation of the convolution region is specific
to the type of texture filtering that is going to be performed. MIP mapping,
summed-area tables, and EWA filtering require their convolution regions to be
described in different ways. When the texture sample is sent to the CMAM the
ID is checked against the cached values. This current ID can match the IDs of
both the cached samples, the ID of the most recently sample only, or any of the
IDs in the cache. The problem then reduces to generating an area based on the
number of cache hits counted and the texture space sampling pattern.

3.2.1 MIP Map Approximation

0
Zero Cache Hits One Cache Hit Two Cache Hits

Figure 8: MIP Map Approximation Using the CM AM

Williams' MIP mapping[33] performs texture filtering by accessing a pre-
filtered texture pyramid and performing trilinear interpolation. The pyramid is
accessed with a d parameter which chooses the two levels which best approxi-
mate the filtered region. Intra-level access is via the texture coordinate (u,v)
and uses bilinear interpolation to reconstruct the texture value within the levels.
The only hard part seems to be constructing d using the CM AM.

We us the following MIP map level approximation algorithm.

1. If the sample does not match the most recent sample, use the highest
level of the pyramid (the average intensity of the texture image) to trade
blurring for aliasing (texture image with high frequencies), or use the
lowest level of the pyramid (point sample) to trade aliasing for blurring
(texture image with high frequencies).

d = 0 or d= MAX LEV EL

Point sampling trades aliasing for blurring, while using the fully averaged
texture image trades blurring for aliasing. Since the human visual sustem
is more tolerent of blurring than aliasing, we chose to use the averaged
texture image.

2. If the sample matches the most recent sample use the length of the line
between the two samples in the following calculation:

d = lg(length of line between samples)

3. If the sample matches the both cached samples, fit an axis-aligned bound-
ing box around the three samples. Use the length of the diagonal of this
bounding box in the same calculation as above.

d = lg(length of diagonal of bounding box)

One Cache Hit

Figure 9: Summed-Area Table Approximation Using the CM AM

3.2.2 Summed-Area Table Approximation

The summed-area tablefll] is not restricted to filtering square regions in
texture space. It is accessed using the corners of the axis-aligned rectangular
region that is to be convolved with a box or Gaussian filter. The summed-area
table access is simple for the CMAM.

1. If the sample does not match the most recent sample, use the texture
space coordinate to either point sample or average the region from the
origin of the summed-area table to the texture coordinate (same criteria
as mentioned above).

2. If the sample matches the most recent sample use the two texture space
coordinates to create a rectangular region to be filtered using the summed-
area table.

3. If the sample matches the both the cached samples, fit an axis-aligned
bounding box around the three samples. Use the upper-right and lower-
left coordinates to access the summed-area table.

3.2.3 EWA Approximation

The EWA algorithm[20] is a direct convolution algorithm (not prefiltering)
and requires the semi-major and semi-minor axes of a texture space elliptical
filtering region as well as a warped filter function. Since the ray-tracer lacks the
inverse compound mapping r"1 , computing the warped filter function can only
be approximated. The axes for the texture space ellipse and the filter kernel
access can be done as follows:

1. No matches uses point sampling as with MIP maps or summed-area tables.

2. If the sample matches the most recent sample use the two texture space
coordinates to create a line which represents the radius of a texture space

10

. Cache Hits One Cache Hit Two Cache Hits

Figure 10: EWA Approximation Using the CMAM

circle (degenerate ellipse). For each texture sample contained within the
circle, use its distance from the center to access a circular symmetric filter
kernal and weight the sample accordingly.

If the sample matches both the cached samples, use the vector from the
current sample to one of the cached samples that is the longest as the
semi-major axis of he texture space ellipse and the vector between the
current point and the other cached sample as the semi-minor axis of the
ellipse. The circularly symmetric filter kernel can then be accessed by the
distance from the center of the ellipse to the sample, normalized by the
distance from the center of the ellipse to the boundary of the ellipse that
runs through the sample point and its value used to weight the samples
within the texture space ellipse.

4 Convex Hull Weighting

Since the CMAM caches only the last two texture samples it is possible that the
area bounding the three most recent samples overlaps a region of the texture
image that already has been included in the final filtered intensity for the current
pixel. We have begun to investgate a method for incorporating the convex hull
of the union of all the approximated convolutions into the CMAM. When a
region is to be filtered, the region is differenced with the convex hull to return
that part of the convolution region which has not yet been incorporated into the
filtered texture intensity (the DC value of the texture image is returned if the
current, region is completely enclosed within the convex hull of the approximate
convolution region). This type of weighting will include each element of the
texture image (within the true convolution region) at most once in the final
filtered intensity, thereby yielding a better approximation to the true texture
intensity.

11

5 Conclusion

The convolution mask approximation module provides a caching system which
is useful for approximating the texture space extent of the screen space filter
kernel. It uses ray coherence to locally approximate the filter extent as a set of
triangular regions that tile areas of the true convolution region. Filtering then
becomes possible using these areas to access either prefiltered data structures or
a direct convolution filtering algorithm[33, 11, 20]. With the use of the CMAM
we are able to perform texture filtering without changing the simplicity of the
basic ray-tracing implementation or limiting any of its photo-realistic features.

References

[1] John Amanatides. Ray Tracing with Cones. Computer Graphics, 18(3):129-

135, July 1984.

[2] James F. Blinn. Return of the Jaggy. IEEE Computer Graphics and Ap-

plications, 9(2):82-89, March 1989.

[3] James F. Blinn. What We Need Around Here Is More Aliasing. IEEE
Computer Graphics and Applications, 9(1):75—79, January 1989.

[4] James F. Blinn and Martin E. Newell. Texture and Reflection in Computer-
Generated Images. Communications of the ACM, 19(10):542—547, October

1976.

[5] Ronald Bracewell. The Fourier Transform, and its Applications. McGraw-

Hill, 1986.

[6] Edwin A. Catmull. Computer Display of Curved Surfaces. Proc. Conf.
on Computer Graphics, Pattern Recognition, Data Structure, pages 11-17,

May 1975.

[7] Robert L. Cook. Stochastic Sampling in Computer Graphics. ACM Trans-
actions on Graphics, 5(1):51—72, Januray 1986.

[8] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray
Tracing. Computer Graphics, 18(3):139-147, July 1984.

[9] Franklin C. Crow. The Aliasing Problem in Computer-Generated Shaded
Images. Communications of the ACM, 20(11)799-805, November 1977.

[10] Franklin C. Crow. A Comparison of Antialiasing Techniques. IEEE Com-
puter Graphics and Applications, 1(1):40—47, January 1981.

12

[11] Franklin C. Crow. Summed-Area Tables. Computer Graphics, 18(3):207—
212, July 1984.

[12] Mark A. Z. Dippe and Erling Henry Wold. Antialiasing Through Stochastic
Sampling. Computer Graphics, 19(3):69—78, July 1985.

[13] William Düngen Jr., Anthony Stenger, and George Sutty. Texture Tile
Considerations for Raster Graphics. Computer Graphics, 12(3):130—134,
August 1978.

[14] Eliot A. Feibush, Marc Levoy, and Robert L. Cook. Synthetic Texturing
Using Digital Filters. Computer Graphics, 14(3):294-301, July 1980.

[15] Eugene Fiume and Robert Lansdale. Fast Space-Variant Texture Filtering
Techniques. SPIE 1991 Proceedings, 1991. Preliminary version of the paper
submitted for publication.

[16] James D. Foley, Andries van Dam, Steven Feiner, and John Hughes. Com-
puter Graphics - Principles and Practice. Addison-Wesley, 1990.

[17] Alain Fournier and Eugene Fiume. Constant-Time Filtering with Space-
Variant Kernals. Computer Graphics, 22(4):229-237, August 1988.

[18] Michel Ganget, Didier Perny, and Phillippe Coueignoux. Perspective Map-
ping of Planar Textures. Computer Graphics, 16(1), May 1982.

[19] Andrew Glassner. An Introduction to Ray Tracing. Academic Press, New
York, 1989.

[20] Ned Greene and Paul Heckbert. Creating Raster Omnimax Images from
Multiple Perspective Views Using the Elliptical Weighted Average Filter.
IEEE Computer Graphics and Applications, pages 21-27, June 1986.

[21] Paul Heckbert. Survey of Texture Mapping. IEEE Computer Graphics and
Applications, 6(11):56—67, November 1986.

[22] Paul S. Heckbert. Fundamentals of Texture Mapping and Image Warping.
Master's thesis, Division of Computer Science, University of California at
Berkeley, June 1989.

[23] Paul S. Heckbert and Pat Hanrahan. Beam Tracing Polygonal Objects.
Computer Graphics, 18(3):119-128, July 1984.

[24] Robert C. Lansdale. Texture Mapping and Resampling for Computer
Graphics. Master's thesis, Department of Electrical Engineering, University
of Toronto, January 1991.

13

[25] Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. Statistically
Optimized Sampling for Distributed Ray Tracing. Computer Graphics,
19(3):61-67, July 1985.

[26] Dimitri Metaxas and Evangelos Milios. Reconstruction of a Color Image
from Nonuniformly Distributed Sparse and Noisy Data. CVGIP: Graphics
Models and Image Processing, pages 103-111, March 1992.

[27] Don P. Mitchell. Generating Antialiased Images at Low Sampling Densities.
Computer Graphics, 21(4):65-69, July 1987.

[28] Don P. Mitchell. The Antialiasing Problem in Ray Tracing. Advanced
Topics in Ray Tracing, SIGGRAPH 1990 Course Notes, 1990.

[29] Don P. Mitchell and Arun N. Netravali. Reconstruction Filters in Computer
Graphics. Computer Graphics, 22(4):221-228, August 1988.

[30] Donald E. Pearson. Transmission and Display of Pictorial Information.
Halsted Press, John Wiley & Sons, New York, 1975.

[31] Ken Shoemake. Personal communication, January 1992.

[32] Turner Whitted. An Improved Illumination Model for Shaded Displays.
Communications of the ACM, 23(6), June 1980.

[33] Lance Williams. Pyramidal Parametrics. Computer Graphics, 17(3):1-11,
July 1983.

14

^^HHHIHMIVM^^^^^^^^^^^^ v t

Figure 11: Test Scene 1 with CM AM on

15

&«^M3&" ." ^.5-?^ ::-.:.:£

Figure 12: Test Scene 1 with CMAM off

16

Figure 13: Test Scene 2 with CMAM on

17

Figure 14: Test Scene 2 with CMAM off

18

Figure 15: Test Scene 3 with CMAM on

19

iiaiSlftiiSiÄßsai^ii

Figure 16: Test Scene 3 with CMAM off

20

Figure 17: Test Scene 4 with CMAM on

21

öi«ii«MlIBlllliliiiIlliiiiÄill

Figure 18: Test Scene 4 with CMAM off

22

